Uncle Hawai

Uncle Hawai

Hello, welcome home

Advanced Slope Analysis: Risk Management and Signal Interpretation

④ Developing a Multi-Dimensional Slope Indicator

As our understanding of time frames and market correlations deepens, it is time to integrate this knowledge into a more comprehensive analytical tool. In my quantitative trading practice, I have found that organically combining multiple dimensions of slope information provides more reliable market insights.

4.1 Composite Indicator Integrating Short, Medium, and Long-Term Slopes

First, let's develop a composite indicator that integrates multiple time dimensions:

               
               
class MultiTimeframeSlopeIndicator:
    def __init__(self, timeframes={'short': '1h', 'medium': '4h', 'long': '1d'},
                 windows={'short': 10, 'medium': 20, 'long': 30}):
        self.timeframes = timeframes
        self.windows = windows
        
    def _calculate_adaptive_slope(self, data, window):
        """
        Calculate the adaptive slope

        parameters:
        data: pd.Series, Price data
        window: int, Calculate window size
        """
        if len(data) < window:
            print(f"Warning: data length {len(data)} less than window size {window}")
            return pd.Series(np.nan, index=data.index)

        # Ensure that the data is continuous and there are no missing values
        data = data.ffill().bfill()

        # Calculate volatility using simple standard deviation
        volatility = data.rolling(window=window, min_periods=1).std()
        slopes = pd.Series(np.nan, index=data.index)

        # Calculate the slope using the vectorisation operation
        for i in range(window, len(data) + 1):
            y = data.iloc[i-window:i].values
            x = np.arange(window)
            if len(y) == window:
                slope, _ = np.polyfit(x, y, 1)
                vol = volatility.iloc[i-1]
                # Standardised slope
                slopes.iloc[i-1] = slope / vol if vol != 0 else slope

        return slopes

    def calculate_composite_slope(self, price_data):
        """
        Calculate the compound slope indicator
        """
        # Initialise the resulting DataFrame
        composite_slopes = pd.DataFrame(index=price_data.index)
        price_data = price_data.ffill().bfill()  # Ensuring continuity of price data

        # Calculate slopes for each time frame
        for tf_name, tf in self.timeframes.items():
            # Resampling data
            resampled = price_data.resample(tf).last()
            resampled = resampled.ffill().bfill()  # Ensure continuous resampling data

            window = self.windows[tf_name]
            if len(resampled) > window:
                # Calculate the slope
                slopes = self._calculate_adaptive_slope(resampled, window)

                # Alignment to original time frame
                aligned_slopes = slopes.reindex(price_data.index).ffill(limit=int(pd.Timedelta(tf) / pd.Timedelta('1H')))
                composite_slopes[tf_name] = aligned_slopes

        # Delete all NaN rows
        composite_slopes = composite_slopes.dropna(how='all')

        # If there is no valid data, return the NaN sequence
        if composite_slopes.empty:
            return pd.Series(np.nan, index=price_data.index)

        # Calculating dynamic weights
        weights = self._calculate_dynamic_weights(composite_slopes)
        composite = self._weighted_composite(composite_slopes, weights)

        return composite.reindex(price_data.index)


    def _calculate_dynamic_weights(self, slopes_data):
        """
        Dynamic adjustment of weights based on trend consistency

        parameters:
        slopes_data: DataFrame, Contains slope data for different time frames
        """
        try:
            # Using a new method for handling NaN values
            slopes_clean = slopes_data.ffill().bfill()

            # Calculate the correlation matrix
            correlations = slopes_clean.corr()

            # Calculate the average correlation for each time frame
            mean_corr = correlations.mean()

            # Ensure that the weights are positive and sum to 1
            weights = np.abs(mean_corr)
            weights_sum = weights.sum()

            if weights_sum > 0:
                weights = weights / weights_sum
            else:
                # If all weights are 0, use equal weights
                weights = pd.Series(1.0/len(slopes_data.columns), index=slopes_data.columns)

            print("\nCalculated weights:")
            for tf, weight in weights.items():
                print(f"{tf}: {weight:.3f}")

            return weights

        except Exception as e:
            print(f"Error calculating dynamic weights: {e}")
            # Return to equal weights
            return pd.Series(1.0/len(slopes_data.columns), index=slopes_data.columns)

    def _weighted_composite(self, slopes_data, weights):
        """
        Calculation of weighted composite indicators

        parameters:
        slopes_data: DataFrame, Contains slope data for different time frames
        weights: Series, Weighting of time frames
        """
        try:
            # Using a new method for handling NaN values
            slopes_clean = slopes_data.ffill().bfill()

            # Calculation of weighted sums
            weighted_sum = pd.Series(0, index=slopes_clean.index)
            for column in slopes_clean.columns:
                weighted_sum += slopes_clean[column] * weights[column]

            return weighted_sum

        except Exception as e:
            print(f"Error in calculating weighted composite indicator: {e}")
            return pd.Series(np.nan, index=slopes_data.index)


def visualize_results(price_data, composite_slopes, indicator, year=2024, month=9):
    """
    Visualisation of the results of the analysis, first calculating all the data and then displaying only the specified months
    """
    # First calculate the slope for all times
    slopes_data = pd.DataFrame(index=price_data.index)
    
    # Calculate the slope of each time frame
    for tf_name, tf in indicator.timeframes.items():
        resampled = price_data.resample(tf).last()
        resampled = resampled.ffill().bfill()
        
        window = indicator.windows[tf_name]
        if len(resampled) > window:
            slopes = indicator._calculate_adaptive_slope(resampled, window)
            aligned_slopes = slopes.reindex(price_data.index).ffill()
            slopes_data[tf_name] = aligned_slopes
    
    # After calculating all the data, select the data of the specified month for plotting.
    mask = (price_data.index.year == year) & (price_data.index.month == month)
    selected_price = price_data[mask]
    selected_slopes = slopes_data[mask]
    selected_composite = composite_slopes[mask] if isinstance(composite_slopes, pd.Series) else None
    
    # Creating Charts
    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(15, 12), sharex=True)
    
    # Creating a Numerical Index
    data_points = list(range(len(selected_price)))
    
    # Plotting price data
    ax1.plot(data_points, selected_price.values, label='Price', color='pink')
    ax1.set_title(f'Price Data ({year}-{month:02d})')
    ax1.grid(True)
    ax1.legend()
    
    # Plotting the slope of each time frame
    colors = {'short': 'red', 'medium': 'blue', 'long': 'green'}
    for tf_name in slopes_data.columns:
        ax2.plot(data_points, selected_slopes[tf_name].values,
                label=f'{tf_name} Slope',
                color=colors[tf_name],
                linewidth=1)
    
    ax2.set_title(f'Slopes by Timeframe ({year}-{month:02d})')
    ax2.grid(True)
    ax2.legend()
    
    # Plotting compound slopes
    if selected_composite is not None:
        ax3.plot(data_points, selected_composite.values,
                label='Composite Slope', color='red', linewidth=1)
    
    ax3.set_title(f'Composite Slope ({year}-{month:02d})')
    ax3.grid(True)
    ax3.legend()
    
    # Set x-axis labels to date
    num_ticks = min(20, len(data_points))  # The number of scales displayed can be adjusted
    tick_indices = np.linspace(0, len(data_points)-1, num_ticks, dtype=int)
    tick_dates = selected_price.index[tick_indices].strftime('%Y-%m-%d')
    
    ax3.set_xticks(tick_indices)
    ax3.set_xticklabels(tick_dates, rotation=45)
    
    # Restructuring of the layout
    plt.tight_layout()
    plt.show()
    
    # Printing Statistics
    print(f"\n{year}年{month}Statistical information on monthly slopes:")
    print(selected_slopes.describe())
    print("\nNumber of NaNs for each time frame:")
    print(selected_slopes.isna().sum())
    
    
# operational test
if __name__ == "__main__":
	visualize_results(price_data, composite_slopes, indicator, year=2024, month=9)

       

The innovations of this composite indicator are:

  • Adaptive: dynamically adjusts calculation parameters based on market volatility
  • Dynamic weighting: automatically adjusts the weights of each time frame based on trend consistency
  • Comprehensive: integrates information from multiple time dimensions
4.2 Considering volume-weighted slopes

Next, let's introduce the volume factor into the slope calculation:

               
def volume_weighted_slope(price_data, volume_data, window=30):
    """
    Calculate the volume-weighted slope
    
    parameters:
    price_data: pd.Series, Price data
    volume_data: pd.Series, Volume data
    window: int, Calculate window size
    """
    try:
        # Ensure data is aligned and there are no missing values
        price_data = price_data.ffill().bfill()
        volume_data = volume_data.ffill().bfill()
        
        # Standardised Volume
        normalized_volume = (volume_data - volume_data.rolling(window).mean()) / \
                           volume_data.rolling(window).std()
        normalized_volume = normalized_volume.fillna(0)  # NaN value at start of treatment
        
        # Initialising the result sequence
        slopes = pd.Series(index=price_data.index)
        slopes[:] = np.nan
        
        # Cycle through the slopes
        for i in range(window, len(price_data)):
            try:
                y = price_data.iloc[i-window:i].values
                x = np.arange(window)
                w = normalized_volume.iloc[i-window:i].values
                
                # Ensuring data validity
                if len(y) == window and len(w) == window and not np.any(np.isnan(y)) and not np.any(np.isnan(w)):
                    # Limit weights to a reasonable range
                    w = np.clip(w, -2, 2)
                    # Add small positive numbers to avoid zero weighting
                    w = np.abs(w) + 1e-8
                    
                    try:
                        # Weighted least squares with numpy
                        slope, _ = np.polyfit(x, y, 1, w=w)
                        slopes.iloc[i] = slope
                    except np.linalg.LinAlgError:
                        # If weighted regression fails, try unweighted regression
                        try:
                            slope, _ = np.polyfit(x, y, 1)
                            slopes.iloc[i] = slope
                        except:
                            continue
            except Exception as e:
                print(f"Error calculating the slope of the {i}th window: {str(e)}")
                continue
        
        return slopes
    
    except Exception as e:
        print(f"Error when calculating volume weighted slope: {str(e)}")
        return pd.Series(np.nan, index=price_data.index)

# usage example
def test_volume_weighted_slope():
    """
    Test Volume Weighted Slope Calculation
    """

    # Calculate the volume-weighted slope
    slopes = volume_weighted_slope(prices, volumes, window=30)
    
    # Merge data and delete invalid data
    valid_data = pd.concat([prices, volumes, slopes], axis=1)
    valid_data.columns = ['Price', 'Volume', 'Slope']
    valid_data = valid_data.dropna()
    
    # Creating a Numerical Index
    data_points = list(range(len(valid_data)))
    
    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(15, 10), sharex=True)
    
    # Drawing prices
    ax1.plot(data_points, valid_data['Price'], 'r-', label='Price')
    ax1.set_title('Price Data')
    ax1.grid(True, linestyle='--', alpha=0.7)
    ax1.legend()
    
    # Plotting Volume
    ax2.plot(data_points, valid_data['Volume'], 'g-', label='Volume')
    ax2.set_title('Volume Data')
    ax2.grid(True, linestyle='--', alpha=0.7)
    ax2.legend()
    
    # Plotting the slope
    ax3.plot(data_points, valid_data['Slope'], 'r-', label='Volume-Weighted Slope')
    ax3.set_title('Volume-Weighted Slope')
    ax3.grid(True, linestyle='--', alpha=0.7)
    ax3.legend()
    
    # Set x-axis labels to date
    num_ticks = 10  # This number can be adjusted to control the number of scales displayed
    tick_indices = np.linspace(0, len(data_points)-1, num_ticks, dtype=int)
    tick_dates = valid_data.index[tick_indices].strftime('%Y-%m-%d')
    
    ax3.set_xticks(tick_indices)
    ax3.set_xticklabels(tick_dates, rotation=45)
    
    plt.tight_layout()
    plt.show()
    
    return valid_data['Slope']
    
    
# operational test
if __name__ == "__main__":
    test_volume_weighted_slope()
               
       

The significance of volume weighting is this:

  • Price movements during high volume periods are given a higher weighting
  • Better identifies real market dynamics
  • Help filter out spurious price movements

The practical application of these multi-dimensional indicators requires a number of factors to be taken into account, such as computational efficiency, signal latency etc. In our next article, we will explore in detail how to translate these indicators into actual tradable strategies.

⑤ Practical Example: Building a Multi-Timeframe, Cross-Market Slope Analysis System

Translating theory into actionable analytical systems is a key challenge in quantitative trading practice. Let's walk through a complete real-world example showing how to build a comprehensive slope analysis system.

               
class ComprehensiveSlopeAnalyzer:
    def __init__(self):
        self.mtf_indicator = MultiTimeframeSlopeIndicator()
        self.markets = {}
        self.correlations = {}

    def add_market_data(self, market_name, price_data, volume_data=None):
        """ 
        Add market data 
        """
        self.markets[market_name] = {
            'price': price_data,
            'volume': volume_data,
            'slopes': {}
        }

    def analyze_market(self, market_name):
        """ 
        Analysing multi-dimensional slopes for individual markets 
        """
        market_data = self.markets[market_name]

        # Calculating Composite Slopes for Multiple Time Frames
        market_data['slopes']['composite'] = self.mtf_indicator.calculate_composite_slope(
            market_data['price']
        )

        # Calculate volume-weighted slope if volume data is available
        if market_data['volume'] is not None:
            market_data['slopes']['volume_weighted'] = volume_weighted_slope(
                market_data['price'],
                market_data['volume']
            )

    def _calculate_trend_strength(self, composite_slope):
        """ 
        Calculation of trend intensity 
        """
        # Assessing trend strength using absolute value and persistence of slope
        strength = pd.Series(index=composite_slope.index)
        window = 20

        for i in range(window, len(composite_slope)):
            current_slopes = composite_slope.iloc[i - window:i]

            # Calculate the consistency of the slope
            direction_consistency = np.sign(current_slopes).value_counts().max() / window
            # Calculate the average absolute value of the slope
            magnitude = np.abs(current_slopes).mean()

            strength.iloc[i] = direction_consistency * magnitude

        return strength

    def _check_volume_confirmation(self, market_name):
        """ 
        Check if volume confirms the trend 
        """
        market_data = self.markets[market_name]
        if 'volume_weighted' not in market_data['slopes']:
            return None

        composite = market_data['slopes']['composite']
        volume_weighted = market_data['slopes']['volume_weighted']

        # Calculate the consistency of the two slopes
        confirmation = np.sign(composite) == np.sign(volume_weighted)

        return confirmation

    def _calculate_trend_consistency(self, slopes):
        """ 
        Calculation of trend consistency indicators 
 
        parameters: 
        slopes: dict, Dictionary with different types of slopes 
 
        return: 
        float: Trend consistency score (0-1) 
        """
        try:
            # Combine all slope data into one DataFrame
            slope_data = pd.DataFrame(slopes)

            # Calculate whether all slopes have the same sign
            signs = np.sign(slope_data)

            # Calculate the consistency of the direction of the slope at each time point
            agreement = signs.apply(lambda x: abs(x.mean()), axis=1)

            # Calculating the overall consistency score
            consistency_score = agreement.mean()

            # Add some details
            details = {
                'mean_consistency': consistency_score,
                'max_consistency': agreement.max(),
                'min_consistency': agreement.min(),
                'periods_fully_aligned': (agreement == 1.0).sum()
            }

            return details

        except Exception as e:
            print(f"Error when calculating trend consistency: {str(e)}")
            return {
                'mean_consistency': 0,
                'max_consistency': 0,
                'min_consistency': 0,
                'periods_fully_aligned': 0
            }

    def generate_market_insights(self, market_name):
        """ 
        Generate Market Insight Reports 
 
        parameters: 
        market_name: str, Market Name 
 
        return: 
        dict: Dictionary with market insights 
        """
        market_data = self.markets[market_name]
        slopes = market_data['slopes']

        insights = {
            'trend_strength': self._calculate_trend_strength(slopes['composite']),
            'trend_consistency': self._calculate_trend_consistency(slopes),
            'volume_confirmation': self._check_volume_confirmation(market_name),
            'related_markets': self._find_related_markets(market_name)
        }

        # Add some explanatory text
        insights['summary'] = self._generate_insights_summary(insights)

        return insights

    def _generate_insights_summary(self, insights):
        """ 
        Generate summary text based on insights 
        """
        summary = []

        # Trend intensity analysis
        strength = insights['trend_strength']
        # If strength is Series,Take the average or latest value
        if isinstance(strength, pd.Series):
            strength = strength.iloc[-1]  # Take the latest value
            # or strength = strength.mean()  # average

        if strength > 0.7:
            summary.append("The current trend is very strong")
        elif strength > 0.3:
            summary.append("Current trend medium intensity")
        else:
            summary.append("Current trend is weak")

        # Trend consistency analysis
        consistency = insights['trend_consistency']['mean_consistency']
        if isinstance(consistency, pd.Series):
            consistency = consistency.iloc[-1]  # Take the latest value

        if consistency > 0.8:
            summary.append("High consistency of trends across time frames")
        elif consistency > 0.5:
            summary.append("Trends are partially consistent across time frames")
        else:
            summary.append("Trends diverge across time frames")

        # Volume Confirmation
        volume_conf = insights['volume_confirmation']
        if isinstance(volume_conf, pd.Series):
            volume_conf = volume_conf.iloc[-1]  # Take the latest value

        if volume_conf:
            summary.append("Volume supports the current trend")
        else:
            summary.append("Volume fails to confirm trend")

        return " | ".join(summary)

    def _find_related_markets(self, market_name):
        """ 
        Finding other markets related to the given market 
 
        parameters: 
        market_name: str, Current market name 
 
        return: 
        dict: Dictionary containing related markets and their correlations 
        """
        try:
            current_market = self.markets[market_name]
            related_markets = {}

            # Calculating correlations with other markets
            for other_name, other_market in self.markets.items():
                if other_name != market_name:
                    # Checking for the existence of data
                    if not isinstance(current_market.get('slopes', {}).get('composite'), (pd.Series, pd.DataFrame)):
                        continue
                    if not isinstance(other_market.get('slopes', {}).get('composite'), (pd.Series, pd.DataFrame)):
                        continue

                    current_slope = current_market['slopes']['composite']
                    other_slope = other_market['slopes']['composite']

                    # Ensure time index alignment
                    aligned_data = pd.DataFrame({
                        'current': current_slope,
                        'other': other_slope
                    }).dropna()

                    if len(aligned_data) > 0:  # Use len() instead of judging the DataFrame directly.
                        # Calculation of correlation coefficients
                        correlation = aligned_data['current'].corr(aligned_data['other'])

                        # Calculate lead/lag relationship
                        max_lag = 5  # Maximum inspection lag
                        lag_correlations = []
                        for lag in range(-max_lag, max_lag + 1):
                            if lag == 0:
                                lag_correlations.append(correlation)
                            else:
                                lag_corr = aligned_data['current'].corr(aligned_data['other'].shift(lag))
                                lag_correlations.append(lag_corr)

                        # Find the strongest correlations and their corresponding lags
                        max_corr_idx = np.argmax(np.abs(lag_correlations))
                        max_corr = lag_correlations[max_corr_idx]
                        lead_lag = max_corr_idx - max_lag

                        # If the correlation coefficient is a valid value, it is added to the result
                        if not np.isnan(correlation):
                            related_markets[other_name] = {
                                'correlation': correlation,
                                'max_correlation': max_corr,
                                'lead_lag': lead_lag,  # Positive values indicate a lead, negative values a lag
                                'significance': self._calculate_correlation_significance(correlation, len(aligned_data))
                            }

            # Sort by strength of relevance
            sorted_markets = dict(sorted(
                related_markets.items(),
                key=lambda x: abs(x[1]['correlation']),
                reverse=True
            ))

            return sorted_markets

        except Exception as e:
            print(f"Error in calculating the relevant market: {str(e)}")
            return {}

    def _calculate_correlation_significance(self, correlation, n_samples):
        """ 
        Calculate the statistical significance of the correlation coefficients 
 
        parameters: 
        correlation: float, correlation coefficient 
        n_samples: int, sample size 
 
        return: 
        float: significance level 
        """
        try:
            # Calculating t-statistics
            t = correlation * np.sqrt((n_samples - 2) / (1 - correlation ** 2))
            # Calculate p-value (two-tailed test)
            from scipy import stats
            p_value = 2 * (1 - stats.t.cdf(abs(t), n_samples - 2))

            return p_value
        except:
            return 1.0  # If the calculation fails, return 1 for not significant

    def analyze_cross_market_relationships(self):
        """ 
        Analysing cross-market relationships 
        """
        market_names = list(self.markets.keys())
        self.market_relationships = {}

        for i in range(len(market_names)):
            for j in range(i + 1, len(market_names)):
                market1 = market_names[i]
                market2 = market_names[j]

                # Access to price data
                market1_data = self.markets[market1]['price']
                market2_data = self.markets[market2]['price']

                # Calculating correlations and lead-lag relationships
                correlation, lead_lag = self._calculate_market_correlation(
                    market1_data, market2_data
                )

                # Storing analysis results
                relationship_key = f"{market1}_{market2}"
                if not correlation.empty and not lead_lag.empty:
                    self.market_relationships[relationship_key] = {
                        'correlation': correlation,
                        'lead_lag': lead_lag,
                        'correlation_strength': self._evaluate_correlation_strength(correlation),
                        'trading_implications': self._generate_trading_implications(correlation, lead_lag)
                    }

        return self.market_relationships

    def _evaluate_correlation_strength(self, correlation):
        """ 
        Assessing the strength of relevance 
 
        parameters: 
        correlation: pd.Series, Correlation coefficient series 
 
        return: 
        str: Description of correlation strength 
        """
        try:
            # Use the latest correlation coefficient value or average
            if isinstance(correlation, pd.Series):
                # Use the latest non-NaN values
                corr_value = correlation.iloc[-1]
                # Or use the average
                # corr_value = correlation.mean()
            else:
                corr_value = correlation

            # Assessed in absolute terms
            corr_value = abs(corr_value)

            if corr_value > 0.8:
                return "Very Strong"
            elif corr_value > 0.6:
                return "Strong"
            elif corr_value > 0.4:
                return "Moderate"
            elif corr_value > 0.2:
                return "Weak"
            else:
                return "Very Weak"

        except Exception as e:
            print(f"Error when evaluating correlation strength: {str(e)}")
            return "Unknown"

    def _calculate_market_correlation(self, market1_data, market2_data):
        """ 
        Calculation of correlation and lead-lag relationship between two markets 
        """
        try:
            # Ensure data alignment
            df = pd.DataFrame({
                'market1': market1_data,
                'market2': market2_data
            }).dropna()

            if len(df) < 2:
                print("Insufficient data points")
                return pd.Series([0]), pd.Series([0])

            # Printing debugging information
            print(f"\ndata statistics:")
            print(f"Number of data points: {len(df)}")
            print(f"Market 1 Scope: {df['market1'].min():.4f} to {df['market1'].max():.4f}")
            print(f"Market 2 Scope: {df['market2'].min():.4f} to {df['market2'].max():.4f}")

            # Calculation of the base correlation coefficient
            correlation = df['market1'].rolling(window=20).corr(df['market2'])
            print(f"\nCorrelation coefficient statistics:")
            print(f"Average correlation coefficient: {correlation.mean():.4f}")
            print(f"Range of correlation coefficients: {correlation.min():.4f} to {correlation.max():.4f}")

            # Calculate the lead-lag relationship
            max_lag = 5
            lag_correlations = pd.Series(index=range(-max_lag, max_lag + 1))

            for lag in range(-max_lag, max_lag + 1):
                if lag == 0:
                    lag_correlations[lag] = correlation.iloc[-1]
                else:
                    lagged_correlation = df['market1'].corr(df['market2'].shift(lag))
                    lag_correlations[lag] = lagged_correlation

            print("\nLead-lag correlation:")
            for lag, corr in lag_correlations.items():
                print(f"Lag {lag}: {corr:.4f}")

            return correlation, lag_correlations

        except Exception as e:
            print(f"Error in calculating market correlation: {str(e)}")
            return pd.Series([0]), pd.Series([0])

    def _generate_trading_implications(self, correlation, lead_lag):
        """ 
        Generate trading strategy recommendations and lower thresholds to capture more trading opportunities 
        """
        implications = []

        try:
            # Get the value of the correlation coefficient
            if isinstance(correlation, pd.Series):
                corr_value = correlation.iloc[-1]
            else:
                corr_value = correlation

            # Lowering the correlation threshold
            if abs(corr_value) > 0.5:  # Reduction from 0.7 to 0.5
                implications.append(f"Correlation strength: {corr_value:.4f}")
                if corr_value > 0:
                    implications.append("Positive correlation: Consider parallel trading")
                else:
                    implications.append("Negative correlation: Consider hedge opportunities")

            # Analysing the lead-lag relationship
            if isinstance(lead_lag, pd.Series):
                max_lag_idx = lead_lag.abs().idxmax()
                max_lag_value = lead_lag[max_lag_idx]

                if abs(max_lag_value) > 0.4:  # Reduction from 0.6 to 0.4
                    if max_lag_idx > 0:
                        implications.append(
                            f"Market 1 leads Market 2 by {max_lag_idx} periods (correlation: {max_lag_value:.4f})")
                    elif max_lag_idx < 0:
                        implications.append(
                            f"Market 2 leads Market 1 by {abs(max_lag_idx)} periods (correlation: {max_lag_value:.4f})")

            return implications

        except Exception as e:
            print(f"Error generating transaction meaning: {str(e)}")
            return ["Unable to generate implications"]

    def get_market_insights(self, market_name):
        """ 
        Access to comprehensive market-specific analyses 
        """
        insights = self.generate_market_insights(market_name)

        # Add analysis of cross-market relationships
        cross_market_insights = {}
        for rel_key, rel_data in self.market_relationships.items():
            if market_name in rel_key:
                other_market = rel_key.replace(market_name + '_', '').replace('_' + market_name, '')
                cross_market_insights[other_market] = {
                    'correlation_strength': rel_data['correlation_strength'],
                    'trading_implications': rel_data['trading_implications']
                }

        insights['cross_market_analysis'] = cross_market_insights
        return insights

    def generate_trading_signals(self, market_name):
        """ 
        Generate trading signals based on comprehensive analysis 
        """
        insights = self.get_market_insights(market_name)
        signals = []

        # Generate trading signals using cross-market relationships
        for other_market, analysis in insights['cross_market_analysis'].items():
            if analysis['correlation_strength'] in ['Very Strong', 'Strong']:
                # Examining the lead-lag relationship
                rel_key = f"{market_name}_{other_market}"
                if rel_key not in self.market_relationships:
                    rel_key = f"{other_market}_{market_name}"

                if rel_key in self.market_relationships:
                    lead_lag = self.market_relationships[rel_key]['lead_lag']
                    if abs(lead_lag.max()) > 0.6:
                        signals.append({
                            'type': 'cross_market',
                            'reference_market': other_market,
                            'strength': analysis['correlation_strength'],
                            'implication': analysis['trading_implications']
                        })

        return signals


# usage example
analyzer = ComprehensiveSlopeAnalyzer()

# Add market data
analyzer.add_market_data('EURUSD', resampled_df1['close'], resampled_df1['value'])
analyzer.add_market_data('GOLD', resampled_df2['close'], resampled_df2['value'])
analyzer.add_market_data('GBPUSD', resampled_df3['close'], resampled_df3['value'])

# analyse
analyzer.analyze_market('EURUSD')
analyzer.analyze_market('GOLD')
analyzer.analyze_market('GBPUSD')

# Analysing cross-market relationships
relationships = analyzer.analyze_cross_market_relationships()

# Access to market-specific analyses
eurusd_insights = analyzer.get_market_insights('EURUSD')

# Generate trading signals
signals = analyzer.generate_trading_signals('EURUSD')

               
       

Calculated weights:

  • short: 0.335 medium: 0.360 long: 0.305
  • short: 0.335 medium: 0.360 long: 0.305
  • short: 0.335 medium: 0.373 long: 0.292
  • short: 0.334 medium: 0.369 long: 0.296

Statistics:

  • Number of data points: 4304
  • Market 1 range: 1.0609 to 1.1193
  • Market 2 range: 1987.2200 to 2624.6400

Correlation Coefficient Statistics.

  • Average correlation coefficient: 0.3203 Correlation coefficient range: -0.9351 to 0.9783
  • Lead-Lag Correlation: Lag -5: 0.3531 Lag -4: 0.3540 Lag -3: 0.3548 Lag -2: 0.3556 Lag -1: 0.3565 Lag 0: 0.0301 Lag 1: 0.3574 Lag 2: 0.3576 Lag 3: 0.3577 Lag 4: 0.3578 Lag 5: 0.3577

Statistics:

  • Number of data points: 4527
  • Market 1 Range: 1.0609 to 1.1193
  • Market 2 range: 1.2309 to 1.3325

Correlation Coefficient Statistics.

  • Average correlation coefficient: 0.7563 Correlation coefficient range: -0.6966 to 0.9987
  • Lead-Lag Correlation: Lag -5: 0.8744 Lag -4: 0.8755 Lag -3: 0.8764 Lag -2: 0.8774 Lag -1: 0.8784 Lag 0: 0.7006 Lag 1: 0.8779 Lag 2: 0.8764 Lag 3: 0.8749 Lag 4: 0.8734 Lag 5. 0.8717

Statistics:

  • Number of data points: 4304
  • Market 1 Range: 1987.2200 to 2624.6400
  • Market 2 range: 1.2309 to 1.3325

Correlation Coefficient Statistics.

  • Average correlation coefficient: 0.3756 Correlation coefficient range: -0.9444 to 0.9796
  • Lead-Lag Correlation: Lag -5: 0.5469 Lag -4: 0.5473 Lag -3: 0.5477 Lag -2: 0.5481 Lag -1: 0.5484 Lag 0: 0.6161 Lag 1: 0.5480 Lag 2: 0.5474 Lag 3: 0.5468 Lag 4: 0.5461 Lag 5. 0.5455

Cross-market analysis.

EURUSD_GOLD.

  • Correlation Strength: Very Weak

EURUSD_GBPUSD.

  • Correlation Strength: Strong

Trading implication:

  • EURUSD_GBPUSD: Correlation strength: Strong
  • EURUSD_GBPUSD: Correlation strength: 0.7006
  • Positive correlation: Consider parallel trading
  • Market 2 leads Market 1 by 1 periods (correlation: 0.8784)

GOLD_GBPUSD.

Correlation strength: Strong

Trading Implication.

  • Correlation strength: 0.6161
  • Positive correlation: Consider parallel trading

Trading Signal: GOLD_GBPUSD

Reference Market: GBPUSD

Signal Strength: Strong

Trade Implication:

  • Positive correlation: Consider parallel trading
  • Correlation strength: 0.7006
  • Positive correlation: Consider parallel trading
  • Market 2 leads Market 1 by 1 period (correlation: 0.8784)

Let us analyse these results in detail and provide relevant findings and recommendations:

  1. Analysis of weight allocations:
    • All three sets of weight allocations show a similar pattern
    • Medium term (medium) has the highest weight, about 0.36-0.37.
    • Medium-term (medium) has the highest weight, about 0.36-0.37. Short-term (short) has the second highest weight, about 0.33-0.335.
    • Long-term (long) weighting the lowest, about 0.29-0.30
      This indicates that the market has the most influence on the medium-term trend and suggests that trading strategies should pay more attention to the medium-term trend.
  2. Market pair correlation analysis:
    • EURUSD vs GOLD.
      • Very weak correlation (average correlation coefficient: 0.3203)
      • The correlation range fluctuates widely (-0.9351 to 0.9783)
      • The correlation drops sharply at Lag 0 (0.0301).
      • Recommendation: The correlation between these two markets is unstable and is not suitable as a main reference for linkage trading.
    • EURUSD vs GBPUSD.
      • Shows strong correlation (average correlation coefficient: 0.7563)
      • The correlation range is relatively stable (-0.6966 to 0.9987)
      • GBPUSD is one cycle ahead of EURUSD (Lag -1: 0.8784)
        Recommendation:
      • GBPUSD's movements can be used to predict EURUSD.
      • Ideal for pair trading strategies
      • Trading with a 1 period time lag may give better results.
    • GOLD vs GBPUSD.
      • Medium strength correlation (average correlation coefficient: 0.3756)
      • Strongest synchronous correlation (Lag 0: 0.6161)
      • Highly volatile correlation range (-0.9444 to 0.9796)
      • Recommendation: Can be used as a secondary reference, but should not be used as a primary decision-making basis.
  3. Comprehensive trading recommendations:
    • Primary Strategy:
      • Use GBPUSD as the primary reference market
      • Take advantage of the fact that GBPUSD is one cycle ahead of EURUSD.
      • Execute orders with appropriate time lag
    • Risk Control:
      • Stop losses should be set to take into account the volatility of the correlation range.
      • It is recommended to use a diversification strategy and not to over-concentrate on a single market pair.
      • Be aware of the risk of sudden changes in correlation under extreme market conditions.
    • Specific recommendations:
      • Deploy the EURUSD trade plan in advance after a clear signal in GBPUSD.
      • Take advantage of the higher medium-term weighting to hold positions in the medium-term range
      • Consider arbitrage trading between GBPUSD and EURUSD.
  4. Monitoring points:
    • Regularly check that the correlation remains stable
    • Watch for trends in weight allocations
    • Closely monitor changes in the lead-lag relationship
  5. Additional recommendations:
    • It is recommended that an automated monitoring system be developed to track changes in these correlations in real time.
    • Consider adding more technical indicators to validate the signals.
    • Establish a backtesting system to verify the historical performance of these correlations.

This analysis system provides good insight into inter-market relationships, but it is recommended that it be used as one of the decision support tools rather than the sole basis. It also needs to be used in conjunction with other technical and fundamental analyses to make the final trading decision.

⑥ Interpretive challenges: how to understand and communicate complex slope signals

After building a complex multi-dimensional slope analysis system, we face a key challenge: how to effectively understand and interpret these complex signals. Especially when dealing with correlations across multiple markets and time frames, signal interpretability is crucial for practical trading decisions.

6.1 Core framework for signal interpretation
               
               
from matplotlib.gridspec import GridSpec

class EnhancedSlopeSignalInterpreter:
    def __init__(self):
        self.correlation_thresholds = {
            'strong': 0.7,
            'medium': 0.4,
            'weak': 0.2
        }
        self.signal_thresholds = {
            'strong_trend': 0.8,
            'moderate_trend': 0.5,
            'weak_trend': 0.3,
            'trend_reversal': -0.2
        }

    def _analyze_weights(self, slopes_data):
        """ 
        Analysing the distribution of weights for different time frames 
        """
        return {
            'short_term': self._calculate_weight_significance(slopes_data['short']),
            'medium_term': self._calculate_weight_significance(slopes_data['medium']),
            'long_term': self._calculate_weight_significance(slopes_data['long'])
        }

    def _analyze_slopes(self, slopes_data):
        """ 
        Analysing slope data 
 
        parameters: 
        slopes_data: dict, Contains slope data for different time frames 
 
        return: 
        dict: Slope analysis results 
        """
        try:
            analysis = {
                'trend_direction': {},
                'trend_strength': {},
                'trend_consistency': {}
            }

            # Analyse the direction and strength of trends for each time frame
            for timeframe, slope in slopes_data.items():
                # Get the latest slope value
                current_slope = slope.iloc[-1] if isinstance(slope, pd.Series) else slope

                # Judging the direction of trends
                analysis['trend_direction'][timeframe] = (
                    'uptrend' if current_slope > 0
                    else 'downtrend' if current_slope < 0
                    else 'neutral'
                )

                # Calculation of trend intensity
                strength = abs(current_slope)
                analysis['trend_strength'][timeframe] = (
                    'strong' if strength > self.signal_thresholds['strong_trend']
                    else 'moderate' if strength > self.signal_thresholds['moderate_trend']
                    else 'weak'
                )

                # Calculate trend consistency
                if isinstance(slope, pd.Series):
                    recent_slopes = slope.tail(20)  # Using the last 20 data points
                    direction_changes = np.diff(np.signbit(recent_slopes)).sum()
                    consistency = 1 - (direction_changes / len(recent_slopes))
                    analysis['trend_consistency'][timeframe] = consistency

            # Calculating the overall trend score
            analysis['overall_trend_score'] = self._calculate_trend_score(slopes_data)

            return analysis

        except Exception as e:
            print(f"Error when analysing slope: {str(e)}")
            return {
                'trend_direction': {},
                'trend_strength': {},
                'trend_consistency': {},
                'overall_trend_score': 0
            }

    def _analyze_correlations(self, correlation_data):
        """ 
        Analysing correlation data 
 
        parameters: 
        correlation_data: dict, Inter-market correlation data 
 
        return: 
        dict: Correlation analysis results 
        """
        analysis = {}

        for market_pair, data in correlation_data.items():
            analysis[market_pair] = {
                'strength': self._classify_correlation(data['correlation']),
                'lead_lag': self._analyze_lead_lag(data['lag_correlations']),
                'stability': self._assess_correlation_stability(data['history'])
            }

        return analysis

    def _calculate_trend_score(self, slopes_data):
        """ 
        Calculating the overall trend score 
        """
        try:
            weights = {
                'short': 0.3,
                'medium': 0.4,
                'long': 0.3
            }

            score = 0
            for timeframe, slope in slopes_data.items():
                if timeframe in weights:
                    current_slope = slope.iloc[-1] if isinstance(slope, pd.Series) else slope
                    score += abs(current_slope) * weights[timeframe]

            return score

        except Exception as e:
            print(f"Error calculating trend score: {str(e)}")
            return 0

    def _classify_correlation(self, correlation):
        """ 
        Classification of correlation coefficients 
        """
        abs_corr = abs(correlation)
        if abs_corr > self.correlation_thresholds['strong']:
            return 'strong'
        elif abs_corr > self.correlation_thresholds['medium']:
            return 'medium'
        else:
            return 'weak'

    def _analyze_lead_lag(self, lag_correlations):
        """ 
        Analysing the lead-lag relationship 
        """
        try:
            # Find the strongest correlations and their corresponding lags
            max_abs_corr = max(lag_correlations.items(), key=lambda x: abs(x[1]))
            lead_lag = max_abs_corr[0]
            correlation = max_abs_corr[1]

            return {
                'lead_lag_periods': lead_lag,
                'correlation_at_lag': correlation,
                'significance': 'significant' if abs(correlation) > self.correlation_thresholds[
                    'medium'] else 'not significant'
            }

        except Exception as e:
            print(f"Error when analysing lead-lag relationship: {str(e)}")
            return {
                'lead_lag_periods': 0,
                'correlation_at_lag': 0,
                'significance': 'not significant'
            }

    def _assess_correlation_stability(self, history):
        """ 
        Assessing the stability of the correlation 
        """
        try:
            if isinstance(history, pd.Series):
                std_dev = history.std()
                stability = 1 - min(std_dev, 1)  # Converting standard deviation to stability score

                return {
                    'stability_score': stability,
                    'volatility': std_dev,
                    'is_stable': stability > 0.7
                }
            else:
                return {
                    'stability_score': 0,
                    'volatility': 1,
                    'is_stable': False
                }

        except Exception as e:
            print(f"Error when assessing correlation stability: {str(e)}")
            return {
                'stability_score': 0,
                'volatility': 1,
                'is_stable': False
            }

    def _assess_risks(self, slopes_data, correlation_data):
        """ 
        Assessing potential risks 
        """
        risks = {
            'correlation_breakdown_risk': False,
            'trend_consistency_risk': False,
            'market_regime_change_risk': False
        }

        # Assessing the risk of correlation breaks
        for market_pair, data in correlation_data.items():
            stability = self._assess_correlation_stability(data['history'])
            if not stability['is_stable']:
                risks['correlation_breakdown_risk'] = True

        # Assessing trend consistency risk
        slope_analysis = self._analyze_slopes(slopes_data)
        if min(slope_analysis['trend_consistency'].values()) < 0.6:
            risks['trend_consistency_risk'] = True

        # Market state change risk
        if slope_analysis['overall_trend_score'] < 0.3:
            risks['market_regime_change_risk'] = True

        return risks

    def _calculate_confidence(self, slopes_data, correlation_data):
        """ 
        Calculate the overall confidence score 
        """
        try:
            # Calculate the slope confidence level
            slope_analysis = self._analyze_slopes(slopes_data)
            slope_confidence = np.mean(list(slope_analysis['trend_consistency'].values()))

            # Calculate the correlation confidence level
            correlation_stabilities = []
            for data in correlation_data.values():
                stability = self._assess_correlation_stability(data['history'])
                correlation_stabilities.append(stability['stability_score'])
            correlation_confidence = np.mean(correlation_stabilities)

            # Composite Confidence Score
            overall_confidence = 0.6 * slope_confidence + 0.4 * correlation_confidence

            return {
                'overall_confidence': overall_confidence,
                'slope_confidence': slope_confidence,
                'correlation_confidence': correlation_confidence
            }

        except Exception as e:
            print(f"Error calculating confidence score: {str(e)}")
            return {
                'overall_confidence': 0,
                'slope_confidence': 0,
                'correlation_confidence': 0
            }

    def interpret_composite_signal(self, slopes_data, correlation_data, market_context=None):
        """ 
        Interpreting compound slope signals and correlation data 
        """
        return {
            'slope_analysis': self._analyze_slopes(slopes_data),
            'correlation_analysis': self._analyze_correlations(correlation_data),
            # 'weight_analysis': self._analyze_weights(slopes_data),
            'risk_assessment': self._assess_risks(slopes_data, correlation_data),
            'confidence_score': self._calculate_confidence(slopes_data, correlation_data)
        }

    def visualize_analysis(self, slopes_data, correlation_data):
        """ 
        Create enhanced visual analyses 
        """
        try:
            # Creating shapes and grids
            fig = plt.figure(figsize=(15, 12))
            gs = GridSpec(3, 2, figure=fig)

            # Slope Analysis Chart
            ax1 = fig.add_subplot(gs[0, :])
            self._plot_slopes_analysis(ax1, slopes_data)

            # correlation heat map
            ax2 = fig.add_subplot(gs[1, 0])
            self._plot_correlation_heatmap(ax2, correlation_data)

            # weighting chart
            ax3 = fig.add_subplot(gs[1, 1])
            self._plot_weight_distribution(ax3, slopes_data)

            # Risk indicator charts
            ax4 = fig.add_subplot(gs[2, :])
            self._plot_risk_indicators(ax4, slopes_data, correlation_data)

            plt.tight_layout()
            return fig

        except Exception as e:
            print(f"Error while creating visualisation analysis: {str(e)}")
            # Creating a Simple Error Tip Chart
            fig, ax = plt.subplots(1, 1, figsize=(8, 6))
            ax.text(0.5, 0.5, f'Visualising Generation Errors: {str(e)}',
                    ha='center', va='center')
            return fig

    def _plot_slopes_analysis(self, ax, slopes_data):
        """ 
        Plotting slope analysis 
        """
        try:
            # Make sure all data is of type Series
            for timeframe, slope in slopes_data.items():
                if isinstance(slope, pd.Series):
                    ax.plot(slope.index, slope, label=f'{timeframe} slope')

            ax.set_title('Multi-timeframe Slope Analysis')
            ax.set_xlabel('Time')
            ax.set_ylabel('Slope Value')
            ax.legend()
            ax.grid(True)

        except Exception as e:
            print(f"Error when plotting slope analysis: {str(e)}")
            ax.text(0.5, 0.5, 'Slope analysis plot error',
                    ha='center', va='center')

    def _plot_correlation_heatmap(self, ax, correlation_data):
        """ 
        Heat mapping of correlations 
        """
        try:
            # Creating a correlation matrix
            markets = set()
            for pair in correlation_data.keys():
                markets.update(pair.split('_'))
            markets = sorted(list(markets))

            corr_matrix = np.zeros((len(markets), len(markets)))
            for i, m1 in enumerate(markets):
                for j, m2 in enumerate(markets):
                    if i != j:
                        pair = f"{m1}_{m2}"
                        rev_pair = f"{m2}_{m1}"
                        if pair in correlation_data:
                            corr_matrix[i, j] = correlation_data[pair]['correlation']
                        elif rev_pair in correlation_data:
                            corr_matrix[i, j] = correlation_data[rev_pair]['correlation']

            # Drawing heat maps
            im = ax.imshow(corr_matrix, cmap='RdYlBu', aspect='auto')
            plt.colorbar(im, ax=ax)

            # Setting up labels
            ax.set_xticks(range(len(markets)))
            ax.set_yticks(range(len(markets)))
            ax.set_xticklabels(markets, rotation=45)
            ax.set_yticklabels(markets)

            ax.set_title('Cross-market Correlations')

            # Add text of correlation coefficients
            for i in range(len(markets)):
                for j in range(len(markets)):
                    if i != j:
                        text = ax.text(j, i, f'{corr_matrix[i, j]:.2f}',
                                       ha="center", va="center",
                                       color="black" if abs(corr_matrix[i, j]) < 0.5 else "white")

        except Exception as e:
            print(f"Error when plotting correlation heat map: {str(e)}")
            ax.text(0.5, 0.5, 'Correlation heatmap error',
                    ha='center', va='center')

    def _plot_weight_distribution(self, ax, slopes_data):
        """ 
        Mapping of weight distribution 
        """
        try:
            # Calculation of weights for each time frame
            weights = {}
            total_abs_slope = sum(abs(slope.iloc[-1]) for slope in slopes_data.values())

            if total_abs_slope > 0:
                for timeframe, slope in slopes_data.items():
                    weights[timeframe] = abs(slope.iloc[-1]) / total_abs_slope

            # Plotting pie charts
            wedges, texts, autotexts = ax.pie(weights.values(),
                                              labels=weights.keys(),
                                              autopct='%1.1f%%',
                                              colors=plt.cm.Set3(np.linspace(0, 1, len(weights))))

            ax.set_title('Timeframe Weight Distribution')

        except Exception as e:
            print(f"Error when plotting weight distribution: {str(e)}")
            ax.text(0.5, 0.5, 'Weight distribution plot error',
                    ha='center', va='center')

    def _plot_risk_indicators(self, ax, slopes_data, correlation_data):
        """ 
        Mapping of risk indicators 
        """
        try:
            # Calculation of risk indicators
            risks = self._assess_risks(slopes_data, correlation_data)
            confidence = self._calculate_confidence(slopes_data, correlation_data)

            # Creating risk indicator bar charts
            indicators = {
                'Correlation Breakdown Risk': float(risks['correlation_breakdown_risk']),
                'Trend Consistency Risk': float(risks['trend_consistency_risk']),
                'Market Regime Change Risk': float(risks['market_regime_change_risk']),
                'Overall Confidence': confidence['overall_confidence'],
                'Slope Confidence': confidence['slope_confidence'],
                'Correlation Confidence': confidence['correlation_confidence']
            }

            # plot
            bars = ax.bar(range(len(indicators)), indicators.values())

            # Setting up labels
            ax.set_xticks(range(len(indicators)))
            ax.set_xticklabels(indicators.keys(), rotation=45)

            # Adding value tags
            for bar in bars:
                height = bar.get_height()
                ax.text(bar.get_x() + bar.get_width() / 2., height,
                        f'{height:.2f}',
                        ha='center', va='bottom')

            ax.set_title('Risk and Confidence Indicators')
            ax.set_ylim(0, 1.2)
            ax.grid(True, axis='y')

        except Exception as e:
            print(f"Errors in charting risk indicators: {str(e)}")
            ax.text(0.5, 0.5, 'Risk indicators plot error',
                    ha='center', va='center')

    def generate_trading_recommendations(self, analysis_results):
        """ 
        Generate trade recommendations based on analysis results 
        """
        return {
            'primary_signals': self._extract_primary_signals(analysis_results),
            'confirmation_signals': self._identify_confirmations(analysis_results),
            'risk_warnings': self._compile_risk_warnings(analysis_results),
            'suggested_actions': self._suggest_trading_actions(analysis_results)
        }

    def _extract_primary_signals(self, analysis_results):
        """ 
        Extracting key trading signals 
        """
        try:
            signals = []

            # Extracting signals from slope analysis
            slope_analysis = analysis_results['slope_analysis']

            # Checking for consistency in trend direction
            trend_directions = slope_analysis['trend_direction']
            if len(set(trend_directions.values())) == 1:
                # All time frames trend in the same direction
                direction = next(iter(trend_directions.values()))
                strength = slope_analysis['overall_trend_score']

                if strength > self.signal_thresholds['strong_trend']:
                    signals.append({
                        'type': 'strong_trend',
                        'direction': direction,
                        'strength': strength,
                        'confidence': 'high'
                    })
                elif strength > self.signal_thresholds['moderate_trend']:
                    signals.append({
                        'type': 'moderate_trend',
                        'direction': direction,
                        'strength': strength,
                        'confidence': 'medium'
                    })

            # Extracting signals from correlation analysis
            corr_analysis = analysis_results['correlation_analysis']
            for market_pair, data in corr_analysis.items():
                if data['strength'] == 'strong':
                    signals.append({
                        'type': 'correlation_signal',
                        'market_pair': market_pair,
                        'strength': data['strength'],
                        'lead_lag': data['lead_lag']
                    })

            return signals

        except Exception as e:
            print(f"Error extracting primary signal: {str(e)}")
            return []

    def _identify_confirmations(self, analysis_results):
        """ 
        Recognition of confirmation signals 
        """
        try:
            confirmations = []

            # Checking trend consistency
            slope_analysis = analysis_results['slope_analysis']
            trend_consistency = slope_analysis.get('trend_consistency', {})

            if trend_consistency:
                avg_consistency = np.mean(list(trend_consistency.values()))
                if avg_consistency > 0.7:
                    confirmations.append({
                        'type': 'trend_consistency',
                        'strength': 'high',
                        'value': avg_consistency
                    })
                elif avg_consistency > 0.5:
                    confirmations.append({
                        'type': 'trend_consistency',
                        'strength': 'medium',
                        'value': avg_consistency
                    })

            # Check relevance confirmation
            confidence = analysis_results['confidence_score']
            if confidence['correlation_confidence'] > 0.7:
                confirmations.append({
                    'type': 'correlation_stability',
                    'strength': 'high',
                    'value': confidence['correlation_confidence']
                })

            return confirmations

        except Exception as e:
            print(f"Error in recognising confirmation signal: {str(e)}")
            return []

    def _compile_risk_warnings(self, analysis_results):
        """ 
        Aggregate Risk Warning 
        """
        try:
            warnings = []
            risks = analysis_results['risk_assessment']

            # Inspection of all types of risks
            if risks['correlation_breakdown_risk']:
                warnings.append({
                    'type': 'correlation_breakdown',
                    'severity': 'high',
                    'description': 'Significant risk of correlation breakdown detected'
                })

            if risks['trend_consistency_risk']:
                warnings.append({
                    'type': 'trend_consistency',
                    'severity': 'medium',
                    'description': 'Potential trend consistency issues detected'
                })

            if risks['market_regime_change_risk']:
                warnings.append({
                    'type': 'regime_change',
                    'severity': 'high',
                    'description': 'Market regime change risk detected'
                })

            # Checking the confidence level
            confidence = analysis_results['confidence_score']
            if confidence['overall_confidence'] < 0.5:
                warnings.append({
                    'type': 'low_confidence',
                    'severity': 'medium',
                    'description': 'Overall signal confidence is low'
                })

            return warnings

        except Exception as e:
            print(f"Error compiling risk warning: {str(e)}")
            return []

    def _suggest_trading_actions(self, analysis_results):
        """ 
        Recommendations for specific trading actions 
        """
        try:
            actions = []
            primary_signals = self._extract_primary_signals(analysis_results)
            confirmations = self._identify_confirmations(analysis_results)
            warnings = self._compile_risk_warnings(analysis_results)

            # Recommendations based on signal strength and confirmation
            for signal in primary_signals:
                if signal['type'] in ['strong_trend', 'moderate_trend']:
                    # Check that there is sufficient confirmation
                    has_confirmation = any(conf['strength'] == 'high' for conf in confirmations)
                    # Check for serious risk warnings
                    has_high_risk = any(warn['severity'] == 'high' for warn in warnings)

                    if has_confirmation and not has_high_risk:
                        actions.append({
                            'action': 'ENTER',
                            'direction': signal['direction'],
                            'confidence': signal['confidence'],
                            'timeframe': 'primary',
                            'reason': f"Strong {signal['direction']} trend with confirmations"
                        })
                    elif has_confirmation:
                        actions.append({
                            'action': 'MONITOR',
                            'direction': signal['direction'],
                            'confidence': 'medium',
                            'timeframe': 'primary',
                            'reason': "Wait for risk reduction"
                        })

                elif signal['type'] == 'correlation_signal':
                    actions.append({
                        'action': 'HEDGE',
                        'market_pair': signal['market_pair'],
                        'confidence': 'high' if signal['strength'] == 'strong' else 'medium',
                        'reason': f"Strong correlation in {signal['market_pair']}"
                    })

            # If there is no clear signal but there is a risk warning
            if not actions and warnings:
                actions.append({
                    'action': 'REDUCE_EXPOSURE',
                    'confidence': 'high',
                    'reason': "Multiple risk factors present"
                })

            return actions

        except Exception as e:
            print(f"Error when generating trade recommendations: {str(e)}")
            return []


def create_sample_data(analyzer):
    """ 
    Creating example data using ComprehensiveSlopeAnalyzer's analysis results 
 
    parameters: 
    analyzer: ComprehensiveSlopeAnalyzer Example, market analysis completed 
 
    return: 
    tuple: (slopes_data, correlation_data) 
    """
    # Get market data and analyses for EURUSD
    eurusd_market = analyzer.markets['EURUSD']

    # Creating Slope Data
    slopes_data = {
        'short': eurusd_market['slopes']['composite'].rolling(window=10).mean(),  # Short-term slope
        'medium': eurusd_market['slopes']['composite'].rolling(window=20).mean(),  # Medium-term slope
        'long': eurusd_market['slopes']['composite'].rolling(window=40).mean()  # Long-term slope
    }

    # Access to correlation data
    correlation_data = {}

    # EURUSD vs GBPUSD
    eurusd_gbpusd_key = next(key for key in analyzer.market_relationships.keys()
                             if 'EURUSD' in key and 'GBPUSD' in key)
    eurusd_gbpusd_rel = analyzer.market_relationships[eurusd_gbpusd_key]

    correlation_data['EURUSD_GBPUSD'] = {
        'correlation': eurusd_gbpusd_rel['correlation'].iloc[-1],
        'lag_correlations': dict(enumerate(
            eurusd_gbpusd_rel['lead_lag'].values,
            start=-len(eurusd_gbpusd_rel['lead_lag']) // 2
        )),
        'history': eurusd_gbpusd_rel['correlation']
    }

    # EURUSD vs GOLD
    eurusd_gold_key = next(key for key in analyzer.market_relationships.keys()
                           if 'EURUSD' in key and 'GOLD' in key)
    eurusd_gold_rel = analyzer.market_relationships[eurusd_gold_key]

    correlation_data['EURUSD_GOLD'] = {
        'correlation': eurusd_gold_rel['correlation'].iloc[-1],
        'lag_correlations': dict(enumerate(
            eurusd_gold_rel['lead_lag'].values,
            start=-len(eurusd_gold_rel['lead_lag']) // 2
        )),
        'history': eurusd_gold_rel['correlation']
    }

    # Add data for GOLD vs GBPUSD
    gold_gbpusd_key = next(key for key in analyzer.market_relationships.keys()
                           if 'GOLD' in key and 'GBPUSD' in key)
    gold_gbpusd_rel = analyzer.market_relationships[gold_gbpusd_key]

    correlation_data['GOLD_GBPUSD'] = {
        'correlation': gold_gbpusd_rel['correlation'].iloc[-1],
        'lag_correlations': dict(enumerate(
            gold_gbpusd_rel['lead_lag'].values,
            start=-len(gold_gbpusd_rel['lead_lag']) // 2
        )),
        'history': gold_gbpusd_rel['correlation']
    }

    return slopes_data, correlation_data


# Using an existing instance of ComprehensiveSlopeAnalyzer
def demonstrate_interpreter_usage(analyzer):
    """ 
    Demonstrate the use of the interpreter 
 
    parameters: 
    analyzer: ComprehensiveSlopeAnalyzer Example, market analysis completed 
    """
    # Creating an Interpreter Instance
    interpreter = EnhancedSlopeSignalInterpreter()

    # Getting example data with analyzer
    slopes_data, correlation_data = create_sample_data(analyzer)

    # Get the full analysis
    analysis_results = interpreter.interpret_composite_signal(
        slopes_data=slopes_data,
        correlation_data=correlation_data,
        market_context={'volatility': 'moderate', 'trading_session': 'london'}
    )

    # Generating Visualisations
    fig = interpreter.visualize_analysis(slopes_data, correlation_data)

    # Get Trading Advice
    recommendations = interpreter.generate_trading_recommendations(analysis_results)

    return analysis_results, fig, recommendations


# main function
def main():
    # Using an existing analyzer instance
    analyzer = ComprehensiveSlopeAnalyzer()

    # Add market data
    analyzer.add_market_data('EURUSD', resampled_df1['close'], resampled_df1['value'])
    analyzer.add_market_data('GOLD', resampled_df2['close'], resampled_df2['value'])
    analyzer.add_market_data('GBPUSD', resampled_df3['close'], resampled_df3['value'])

    # analyse
    analyzer.analyze_market('EURUSD')
    analyzer.analyze_market('GOLD')
    analyzer.analyze_market('GBPUSD')

    # Analysing cross-market relationships
    analyzer.analyze_cross_market_relationships()

    # Use of analyses
    analysis_results, fig, recommendations = demonstrate_interpreter_usage(analyzer)

    # Print analysis results
    print("\n=== analysis results ===")
    print("\n1. Slope analysis:")
    print(analysis_results['slope_analysis'])

    print("\n2. relevance analysis:")
    print(analysis_results['correlation_analysis'])

    # print("\n3. weighting analysis:")
    # print(analysis_results['weight_analysis'])

    print("\n4. risk assessment:")
    print(analysis_results['risk_assessment'])

    print("\n5. confidence score:")
    print(analysis_results['confidence_score'])

    # Print Trading Recommendations
    print("\n=== Trading Recommendations ===")
    print("\n1. Main signals:")
    print(recommendations['primary_signals'])

    print("\n2. acknowledgement:")
    print(recommendations['confirmation_signals'])

    print("\n3. risk warning:")
    print(recommendations['risk_warnings'])

    print("\n4. Recommended Operation:")
    print(recommendations['suggested_actions'])

    # plot
    plt.show()


if __name__ == "__main__":
    main()
               
               
       

6.2 Comprehensive analyses

Let's try to do a detailed interpretation:

6.2.1 Multi Time Frame Slope Analysis:
  • From the graph, we can see that the slopes of all three time frames (short-term, medium-term, and long-term) show an upward trend, indicating good overall trend consistency.
  • The slope fluctuates between -0.15 and 0.15, and is currently in a slight upward phase.
  • Trend consistency for all three timeframes is 100 per cent (trend_consistency all 1.0), but all are weak (trend_strength ‘weak’).
  • The overall trend score is low (0.076), suggesting that while the direction is consistent, the momentum is weak
6.2.2 Cross-market correlation:

EURUSD-GBPUSD:

  • shows the strongest correlation (dark blue area in the heat map, correlation coefficient 0.70)
  • Lead-lag analysis shows GBPUSD leading EURUSD by 2 periods (lead_lag_periods: -2)
  • The correlation is stable (stability_score: 0.72) and significant
  • This is the most reliable market relationship

EURUSD-GOLD:

  • weak correlation (light coloured area in the heat map, correlation coefficient 0.03)
  • Correlation is unstable (stability_score: 0.51)
  • Statistically insignificant
  • Not suitable as a trading reference

GOLD-GBPUSD:

  • medium correlation (medium blue colour in heat map, correlation coefficient 0.62)
  • Correlation less stable (stability_score: 0.54)
  • Significant but volatile
6.2.3 Timeframe weight distribution:

The weight distribution is more balanced across the three time frames:

  • Medium term: 35.6 per cent
  • Long-term: 32.5 per cent
  • Short-term: 31.9 per cent

This balanced distribution indicates that the importance of each time period is similar.

6.2.4 Risk and confidence indicators:
  • High risk factors:
    • Correlation Breakdown Risk = 1.00
    • Market Regime Change Risk = 1.00
    • Low Trend Consistency Risk (Trend Consistency Risk = 0.00)
  • Confidence Indicators:
    • Overall confidence level is high (0.84)
    • Slope confidence level is high (1.00)
    • Medium Confidence in Correlation (0.59)
6.2.5 Trading recommendations:

Main operational strategy:

  • hedge trade against EURUSD-GBPUSD pair

Specific recommendation:

  • Take advantage of the fact that GBPUSD leads EURUSD by 2 periods.
  • Set strict risk controls as there is a high risk of correlation breaks.
  • Closely monitor changes in market conditions
6.2.6 Caution:
  • It is not recommended to use the EURUSD-GOLD pair as a trading reference.
  • Special attention needs to be paid to the stability of the correlation
  • Although the trend is consistent, it is recommended to reduce the size of the trade due to the weak strength

Overall, the market is currently in a state of consistent direction but weak momentum, the main trading opportunities come from the correlation between markets, especially the high correlation characteristics of the EURUSD-GBPUSD pair. At the same time, however, one needs to be wary of the higher risk of correlation breaks and the risk of market state changes.

6.3 Enhanced Signal Interpretation Methodology

Based on practical experience and in-depth analyses, effective interpretation of complex slope signals requires a multi-level and dynamic interpretation framework:

  • a hierarchical correlation analysis system:
    • Static correlation assessment:
      • Strongly correlated market pairs (>0.7): focus on lead-lag relationship and stability
      • Moderately correlated market pairs (0.4-0.7): as a secondary reference, focusing on correlation evolution trends.
      • Weakly correlated market pairs (<0.4): only as background information on the market environment
    • Dynamic correlation monitoring:
      • Rolling correlation calculation over multiple time windows (short-term 5 minutes, medium-term 15 minutes, long-term 1 hour)
      • Correlation mutation detection and early warning mechanism
      • Correlation stability scoring system (considering volatility, volume, external factors)
  • Trend consistency assessment framework:
    • Multi-dimensional trend analysis:
      • Directional consistency: comparison of trend direction across time frames
      • Strength assessment: quantification of trend strength across time frames
      • Persistence analysis: time duration characteristics of trends
    • Trend Quality Assessment:
      • Trend score calculation (combining direction, strength, and persistence)
      • Divergence detection and early warning
      • Trend transition probability assessment
  • market state identification system:
    • State characterisation:
      • Slope distribution characterisation
      • Time frame weight distribution
      • Volatility characterisation
    • State transition monitoring:
      • Key technology level breakthrough monitoring
      • Identification of changes in market structure
      • Market sentiment indicator tracking
  • Risk assessment and monitoring mechanisms:
    • Correlation Breakdown Risk Monitoring:
      • Real-time tracking of correlation coefficients
      • Volatility anomaly detection
      • Assessment of the impact of external factors
      • Volume anomaly monitoring
    • Market State Change Risk Assessment:
      • Trend strength change tracking
      • Market structure integrity analysis
      • Monitoring of market sentiment indicators
      • Tracking of changes in institutional positions
  • Signal credibility scoring system:
    • Multi-factor composite score:
      • Trend Consistency Score (0-100)
      • Correlation Stability Score (0-100)
      • Market State Confidence Score (0-100)
    • Dynamic weight adjustment:
      • Dynamic adjustment of factor weights based on market environment
      • Optimisation of weights to account for historical accuracy
      • Introduction of market volatility factor
  • Risk warning and response mechanisms:
    • Multi-level warning system:
      • Multi-level warning system: Primary warning: single indicator anomaly
      • Multi-level warning system: Primary warning: single indicator anomaly Intermediate warning: multiple indicator resonance
      • Advanced warning: systemic risk signalling
    • Hierarchical response strategy:
      • Position adjustment programme
      • Optimisation of hedging strategies
      • Dynamic adjustment of stop-loss conditions
  • Signal output optimisation:
    • Hierarchical signal system:
      • Core signals: Highly credible primary signals with multiple confirmations.
      • Confirmation signals: secondary signals that support the core signals.
      • Early Warning Signals: risk alerts and cautions
    • Clarification of execution recommendations:
      • Specific operational recommendations
      • Risk control parameters
      • Risk control parameters Signal validity limits

Practical recommendations:

  • Establish a systematic monitoring process:
    • Regular evaluation of the signal quality
    • Continuous optimisation of parameter settings
    • Record and analyse anomalous cases
  • Maintain strategy adaptability:
    • Adjust strategy parameters according to market conditions
    • Create a variety of alternative strategies
    • Maintain the flexibility of strategy switching
  • Focus on risk control:
    • Monitor risk indicators in real time
    • Establish a clear stop-loss mechanism
    • Maintain adequate risk buffer
  • Continuous optimisation:
    • Regular backtesting and evaluation
    • Collect and analyse failure cases
    • Update and optimise parameter settings

This enhanced signal interpretation framework emphasises the importance of systematic, dynamic and risk control, providing more reliable market insights and trading recommendations through a multi-layered analysis and monitoring mechanism. At the same time, the flexibility of the framework allows for continuous optimisation and adjustment in response to market changes, ensuring the long-term effectiveness of the system.

This optimised framework not only provides a clearer structure for interpreting signals, but also better integrates the characteristics of actual market data. In the next article, we will explore in detail how to translate these signals into concrete trading decisions.

  If you have questions about investing or other financial topics, join the group chat!

CONTENTS